Rigorous analytical modeling of light scattering by particles and spherical surfaces in a focused beam

نویسندگان

  • Thanh Xuan Hoang
  • Xudong Chen
  • Colin J.R. Sheppard
  • C. J. R. Sheppard
چکیده

Light scattering by a sphere has long been interest of studying and developing different microscopies that are used for studying different objects such as biological cells, molecules, atoms. The generalized Lorenz-Mie theory (GLMT) has been well developed for analyzing the scattering effects. In this paper, we present a novel interpretation of the scattering mechanism. A converging beam becomes a diverging beam after passing through the focus. The GLMT defined the incident beam so that it comprises both the converging beam and the diverging beam. We define the incident beam so that it only comprises the converging beam. Then we show that whereas the definition of the GLMT can be applied only to the sphere, our definition can be applied to both the sphere and the SIL. To account for the multiple reflections inside the sphere, Debye series have been formulated and developed for more than 100 years. Since we use the different definition of the incident beam, we formulate different series for explaining the scattering mechanism [1].

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Computer Modeling of Mie-Scattering by Spherical Droplets Within the Atmosphere

The Earth’s atmosphere is an environment replete with particles of differ-ent sizes with various refractive indices which affect the light radiation traveling through it. The Mie scattering theory is one of the well-known light scattering techniques ap-plicable to modeling of electromagnetic scattering from tiny atmospheric particles or aerosols floating in the air or within the clouds. In this...

متن کامل

Determination of the size distribution of monodesperse and bidisperse mixtures of spherical particles in the nanometer and submicron size range by applying cumulant analysis and contin algorithm in dynamic light scattering

Determination of particle size is one of the major needs in the industry and biotechnology. Dynamic light scattering (DLS) is a widely used technique for determining size distribution of spherical particle in nanometer and submicron size range. In this method, there are different algorithms for determining the size and size distribution of particles, which are selected according to the required...

متن کامل

Interaction of Laser Beam and Gold Nanoparticles, Study of Scattering Intensity and the Effective Parameters

 In this paper, the optical properties of gold nanoparticles investigated. For this purpose the scattering intensity of a laser beam incident on gold nanoparticles has been studied using Mie theory and their respective curves versus different parameters such as scattering angle, wavelength of the laser beam and the size of gold nanoparticles are plotted. Investigating and comparison of the depi...

متن کامل

Quantitative Comparison of Analytical solution and Finite Element Method for investigation of Near-Infrared Light Propagation in Brain Tissue Model

Introduction: Functional Near-Infrared Spectroscopy (fNIRS) is an imaging method in which light source and detector are installed on the head; consequently, re-emission of light from human skin contains information about cerebral hemodynamic alteration. The spatial probability distribution profile of photons penetrating tissue at a source spot, scattering into the tissue, and being released at ...

متن کامل

شرایط گذار به اشتعال غیرتعادلی در افروزش حجمی هدف‌های کروی ساده

In this Research, the transition from equilibrium ignition to non-equilibrium burn was studied by DEIRA4 code for simple spherical targets with the dimensions of several mm. It consisted of inner DT fuel and outer Au layers driven by the 209Bi heavy ions beam. Because of their higher plasma opacity, it was expected that they could trap much of the produced charged particles, radiation or even f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013